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ABSTRACT 
The expected number of segregating sites and  the expectation of the average number of nucleotide 

differences among DNA sequences randomly sampled from  a population, which  is not in equilibrium, 
have been developed. The results obtained indicate that, in the case where the population size  has 
changed drastically, the  number of segregating sites is influenced by the size of the  current population 
more strongly than is the average number of nucleotide differences, while the average number of 
nucleotide differences is affected by the size  of the original population more severely than is the 
number of segregating sites. The results also indicate that  the average number of nucleotide 
differences is affected by a population bottleneck more strongly than is the  number of segregating 
sites. 

T HE amount of genetic variation at  the DNA level 
can be  measured by the  number of segregating 

sites among DNA sequences sampled (WATTERSON 
1975) or by the average number of (pairwise) nucleo- 
tide  differences  between DNA sequences sampled 
(TAJIMA 1983). The statistical properties of these 
quantities have been  obtained  under  the assumption 
that  the size of population is constant (WATTERSON 
1975; TAJIMA 1983). 

The size  of population,  however,  often  changes 
drastically. Although the effects of change in popula- 
tion size on heterozygosity and  the  number of alleles 
in a sample have already  been  studied by NEI, MA- 
RUYAMA and CHAKRABORTY  (1975),  CHAKRABORTY 
and NEI  (1977), MARUYAMA and FUERST (1984, 
1985a,b), WATTERSON (1986),  the effect of change in 
population size on  the  number of segregating sites 
and  the average  number of nucleotide  differences is 
not yet known. 

Here I  examine this problem  quantitatively, since 
the  number of segregating sites and  the average  num- 
ber of nucleotide  differences are  more  appropriate 
measures for  the  amount of DNA polymorphism than 
heterozygosity and  the  number of alleles. 

THEORY 

Assumption: Assume that a  mutant is selectively 
neutral (KIMURA 1968,  1983), and  that  the  number 
of sites on a DNA sequence is so large  that  a newly 
arisen  mutation takes place at a site different  from  the 
sites where the previous  mutations have occurred 
(KIMURA 1969). Also assume that  a  population consists 
of diploid individuals, and consider  a DNA sequence 
located on an autosomal  chromosome. 

General  formula: Consider  a  randomly  mating 
population with discrete and nonoverlapping  genera- 
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tions, and let Nt be  the effective population size  in the 
tth  generation.  Denote by v the mutation rate per 
DNA sequence per  generation. Also denote  the ex- 
pected  number of segregating sites among n DNA 
sequences randomly chosen from  a  population in the 
tth  generation by S,(t). 

The number of segregating sites is the  number of 
sites which are segregating (or polymorphic) among n 
DNA sequences. On  the  other  hand,  the average 
number of nucleotide  differences between DNA se- 
quences is given by 

where I t j  is the  number of nucleotide  differences 
between the  ith  and  jth DNA sequences. Therefore, 
the expectation  of the average  number of nucleotide 
differences is equal to  the expected  number of nu- 
cleotide  differences between two DNA sequences ran- 
domly sampled from a  population. Since the  number 
of nucleotide  differences between two DNA se- 
quences is equal to  the  number of segregating sites 
when n is 2, the expectation of the average number 
of nucleotide  differences is equal to  the expected 
number of segregating sites for n = 2, namely 

E$)  = S,(t). 

Incidentally, S,(t) = 0 since there is no segregating site 
when only one DNA sequence is considered. 

If we denote  the probability,  that n DNA sequences 
randomly sampled from  a  population in the  tth  gen- 
eration  are derived  from i DNA sequences in the 
previous  generation, by Pn(i) then Sn(t) is given by 

n 

S,(t) = Si(t - l)Pn(i) + nv, 
I= 1 
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where  the last term in the  right side of (1) is the effect 
of mutations. When n is small, P,(i) is approximately 
given by 

mined from  the initial conditions. Then, we have 
n 

~ , ( t )  = bn,l + C b,.iexp(-a,t), (6) 
i=2 

where 

P,(n) = 1 - - , 
2Nt-1 

and 

P,(i) = 0 for i < n - 1 

(KINGMAN 1982; HUDSON 1983; TAJIMA 1983). Sub- 
stituting (2) into (l), we have 

&(t) - S,(t - 1) 

where Sl(t)  = 0 as mentioned  earlier. 

becomes 
If we use the differential  equation  method,  (3) 

This formula is simpler than  (3),  and we do not have 
to assume that n is small  in this case. We use (4) instead 
of (3) in order to  obtain S,(t). 

Assume that  the  population size is constant (Nf = N ,  
for t > 0). Then, integration of (4) gives 

M +- 
n - 1  + C,exp(-a,t), 

where 

M = 4Nv, 

a, = -, 
2N 

and Cn is the integral  constant which can be deter- 

n- 1 

bn,n = ~ n ( 0 )  - bn,i. 
I= 1 

bl,l is equal to 0 since S,(t)  is 0, so that we have 
n-1 

bn,, can be  obtained by using (7) repeatedly. 
For  example, when n is 2, from (7) we have 

b2,1 = M and b2,2 = S40) - M .  

Therefore, we obtain 

&(t) = M + [&(0) - M]exp[-t/(2N)], (8) 

which is identical with the  formula  obtained by LI 
(1977) using a  different  method. Incidentally, LI 
(1977) has shown not only the expectation  but also 
the variance and distribution of the  number of nu- 
cleotide differences between two DNA sequences. 

Starting  from an equilibrium  population: When 
the  population is in equilibrium at time 0, we can 
simplify (6) .  Since S,(O) = Mo C:Z/ (l/z),  where Mo = 
4N0v (WATTERSON 1975), (6) becomes 

n-l 1 W21 

1=1 a I= 1 
S,(t) = M 7 + (Mo - M)  cn,iexp(-a2,t), (9) 

where  [n/2] is the largest integer which is not  greater 
than  n/2,  and cn,, is given by 

(n - l)!n!(4i - 1) 
cnri = (n - 2i)!(n + 2i - l)!i(2i - 1)' (10). 

When n = 2, we have c2 , ]  = 1  from  (10). Therefore, 
we obtain (8). 

NUMERICAL  EXAMPLE 

Starting  from an equilibrium  population: First, we 
consider  the case where the population is in equilib- 
rium  at  time 0. Then, Sn(t) is given by (9). Table 1 
shows the case where M o  = 0 and M = 1. This means 
that until time 0 the size  of the population is so small 
that  there is no genetic  variation, but population size 
becomes large  afterwards. In this table the values of 
S,(t)/C:=;' (l/i)  are shown, since they are equal to M 
when the population is  in equilibrium.  From this table 
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TABLE 1 

Values of S.(t)/C:=;' ( I / i )  obtained by equation 9, where 4N0v = 0 
and 4Nv = 1 are  assumed 

Sample size (n) 
t - 

2N 2 5 10  20 50 100 

0.0 0.000 0.000 0.000 0.000 0.000 0.000 
0.1 0.095 0.109 0.146 0.198 0.283 0.349 
0.2 0.181 0.202 0.253 0.317 0.407 0.469 
0.3 0.259 0.282 0.337 0.403 0.488 0.545 
0.4 0.330 0.353 0.407 0.471 0.550 0.601 
0.5 0.393 0.416 0.468 0.527 0.599 0.646 
0.6 0.451 0.472 0.521 0.575 0.641 0.683 
0.7 0.503 0.523 0.567 0.617 0.677 0.715 
0.8 0.551 0.568 0.609 0.655 0.709 0.743 
0.9 0.593 0.610 0.647 0.688 0.737 0.768 
1.0 0.632 0.647 0.681 0.718 0.763 0.791 
1.2 0.699 0.711 0.739 0.769 0.806 0.829 
1.4 0.753 0.763 0.786 0.811 0.841 0.860 
1.6 0.798 0.806 0.825 0.846 0.870 0.885 
1.8 0.835 0.841 0.857 0.874 0.894 0.906 
2.0 0.865 0.870 0.883 0.896 0.913 0.923 
2.5 0.918 0.921 0.929 0.937 0.947 0.953 
3.0 0.950 0.952 0.957 0.962 0.968 0.972 
3.5 0.970 0.971 0.974 0.977 0.981 0.983 
4.0 0.982 0.982 0.984 0.986 0.988 0.990 
4.5 0.989 0.989 0.990 0.992 0.993 0.994 
5.0 0.993 0.994 0.994 0.995 0.996 0.996 
6.0 0.998 0.998 0,998 0.998 0.998 0.999 
7.0 0.999 0.999 0.999 0.999 0.999 0.999 
8.0 1.000 1.000 1.000 1.000 1.000 1.000 

.S,(t) is the expected number of segregating sites among  a sample 
of n DNA sequences. Especially, &(t)  is equal to  the expectation of 
the average number of (pairwise) nucleotide differences between 
DNA sequences sampled. 

we can see that  the  amount of variation increases very 
slowly,  especially  in the case of n = 2. For example, it 
takes 1.4N generations until this number becomes 
half of the maximum value. On  the  other hand, in the 
case  of n = 100 it takes only 0.5N generations. In fact, 
from (9) we can see that  the  larger is the sample size, 
the  more quickly the  number of segregating sites 
increases. 

Table 2 shows the case where the size of population 
suddenly becomes one  hundredth  at time 0. In this 
case the  number of segregating sites declines more 
rapidly than  the  average  number of nucleotide  differ- 
ences. Again, the  larger is the sample size, the  more 
quickly the  number of segregating sites decreases. 

Bottleneck  effect: In this section we consider the 
case where the size of  the population becomes small, 
but  the population  recovers the original size T gen- 
erations  later.  Figure 1 shows this process. At time 0 
the population is assumed to be in equilibrium, so that 
&(t) for 0 < t < T can be  computed, using (9). After 
then, S,(t) is computed, using (6) with (7), since the 
population is no more in equilibrium. It should  be 
noted  that M is replaced with Mo in these  formulae. 

Figure 2 gives several examples in  which the popu- 
lation size is assumed to become one  hundredth of the 

TABLE 2 

Values of S,,(t)/ZZ/ (l/i) obtained by equation 9, where 4Nov = 
100 and 4Nv = 1 are assumed 

t 

2N 

0.0 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 
1 .o 
1.2 
1.4 
1.6 
1.8 
2.0 
2.5 
3.0 
3.5 
4.0 
4.5 
5.0 
6.0 
7.0 
8.0 
9.0 

10.0 

- 
2 

100.00 
90.58 
82.05 
74.34 
67.36 
6 1.05 
55.33 
50.16 
45.48 
41.25 
37.42 
30.82 
25.41 
20.99 
17.36 
14.40 
9.13 
5.93 
3.99 
2.81 
2.10 
1.67 
1.25 
1.09 
1.03 
1.01 
1 .oo 

5 

100.00 
89.17 
80.00 
72.06 
65.07 
58.84 
53.27 
48.25 
43.74 
39.66 
35.97 
29.63 
24.44 
20.19 
16.7 1 
13.86 
8.80 
5.73 
3.87 
2.74 
2.06 
1.64 
1.24 
1.09 
1.03 
1.01 
1 .oo 

Sample size (n) 

10  20 

100.00  100.00 
85.55 80.36 
74.99 68.60 
66.63 60.1 1 
59.67 53.40 
53.70 47.83 
48.47 43.06 
43.84 38.88 
39.69 35.18 
35.98 31.88 
32.63 28.91 
26.88 23.83 
22.18 19.68 
18.34 16.29 
15.20 13.52 
12.62 11.25 
8.05 7.22 
5.28 4.77 
3.59 3.29 
2.57 2.39 
1.95 1.84 
1.58 1.51 
1.21 1.19 
1.08 1.07 
1.03 1.03 
1.01 1.01 
1.00 1.00 

50 100 

100.00 100.00 
72.01 65.45 
59.72 53.53 
51.65 46.04 
45.57 40.51 
40.65 36.10 
36.52 32.40 
32.94 29.22 
29.79 26.43 
26.99 23.95 
24.49 21.73 
20.20 17.95 
16.71 14.87 
13.86 12.35 
1 1.53 10.29 
9.62 8.61 
6.23 5.62 
4.17 3.80 
2.92 2.70 
2.17 2.03 
1.71 1.62 
1.43 1.38 
1.16 1.14 
1.06 1.05 
1.02 1.02 
1.01 1.01 
1.00 1.00 

S.(t) is the expected number of segregating sites among  a sample 
of n DNA sequences. Especially, &(t) is equal to  the expectation of 
the average number of (pairwise) nucleotide differences between 
DNA sequences sampled. 
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FIGURE 1 .-The bottleneck model. 

original size. For  the values of T ,  0.4N, N ,  and 2N are 
used. In all the cases examined,  larger  reduction of 
S,(t) is observed when n is larger,  but  the  bottleneck 
effect continues  longer in the case where n is smaller. 
In  other words, the average number of nucleotide 
differences is affected by the bottleneck of population 
size more  strongly  than is the  number  of segregating 
sites. 
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FIGURE Z.-ReIationship between S,(t)/C:G' (l/i) and  the number of generations after the recovery of population size. S.(t) is the expected 
number of segregating sites among  a sample of n DNA sequences. Especially, &(t) is equal to  the expectation of the average number of 
(pairwise) nucleotide differences between DNA sequences sampled. The bottleneck model is shown in Figure 1. The durations ( T )  of 
bottleneck are (a) 0.4N. (b) N, and (c) 2N generations. 4N0v = 1 and 4Nv = 0.01 are assumed. When points and A (and 0) are close to 
each other, only point is plotted in order  to avoid confusion. Point 0 is eliminated when it is close to point A. 

DISCUSSION 

In this paper  the  formulae  for  computing  the  ex- 
pected number of segregating sites and  the expecta- 
tion of the  average  number of nucleotide  differences 
among DNA sequences sampled from  a  population, 
which is not in  equilibrium,  have  been  developed. The 
results  obtained  indicate  that  the  number of segregat- 
ing sites is influenced by the size of current population 
more strongly  than is the  average  number  of  nucleo- 
tide  differences, while the  average  number of nucleo- 
tide  differences is affected by the size of original 
population more severely than is the  number of seg- 
regating sites. The relationship  between the two num- 
bers is quite similar to  the relationship  between  het- 
erozygosity and  the  number of alleles. In fact  hetero- 
zygosity and  the  number of alleles obtained  from  the 
infinite allele model are equivalent to  the  average 
number of nucleotide  differences and  the  number of 
segregating sites obtained  from  the infinite  site  model, 
respectively. 

Recently, TAJIMA ( 1  989) has developed  a statistical 
method  for  testing  the  neutral  mutation hypothesis 

by using the  average  number of  nucleotide  differences 
and  the  number of  segregating sites. This  method, 
however, assumes that a  population is in equilibrium. 
As he has indicated, we must  consider  whether the 
population used is in equilibrium or  not when we 
apply this method.  In fact, if the population  experi- 
enced  a  bottleneck  recently, then this method may 
falsely reject the  neutral hypothesis. This might  be 
avoided,  however, if we apply this method  for several 
types of DNA polymorphism  separately; for example, 
coding  region us. noncoding  region,  nucleotide poly- 
morphism vs. insertion/deletion  polymorphism, mi- 
tochondrial DNA vs. nuclear DNA, and so on. 

I thank B. S. WEIR and two anonymous reviewers for  their 
valuable suggestions and comments. 
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